8^2=8+3x(x+4)

Simple and best practice solution for 8^2=8+3x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^2=8+3x(x+4) equation:



8^2=8+3x(x+4)
We move all terms to the left:
8^2-(8+3x(x+4))=0
We add all the numbers together, and all the variables
-(8+3x(x+4))+64=0
We calculate terms in parentheses: -(8+3x(x+4)), so:
8+3x(x+4)
determiningTheFunctionDomain 3x(x+4)+8
We multiply parentheses
3x^2+12x+8
Back to the equation:
-(3x^2+12x+8)
We get rid of parentheses
-3x^2-12x-8+64=0
We add all the numbers together, and all the variables
-3x^2-12x+56=0
a = -3; b = -12; c = +56;
Δ = b2-4ac
Δ = -122-4·(-3)·56
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{51}}{2*-3}=\frac{12-4\sqrt{51}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{51}}{2*-3}=\frac{12+4\sqrt{51}}{-6} $

See similar equations:

| -16(d+1)=-1 | | 5p+20-10p=0 | | 3x+90=7x+54 | | 3x+90=7x+90 | | x/(0.1-2x)=32 | | 3x-15+15=100 | | 3x/x=27 | | 3x-2/6-2x+7=0 | | 7a/3=21=0 | | Y-3=-6(x-2 | | -6x+15=-13 | | 2d+6=9 | | 2h-11=7h-41 | | .2-5120/(x^2)=0 | | x+109=x+88 | | x+109=x+39 | | 12n2+21n=0 | | 0.05x+0.1(x+6)=1.65 | | 0.2x+54+0.2x+58=180 | | X^2+5x+8=17 | | 6.2=4u-19.4 | | 12+12+4x=360 | | 4x+6=6x+24 | | 1.5^y=2.25 | | -2-17+12-(-4)=x | | Y=5x+1300 | | 45()=9z() | | 4b-5=3+2b | | a-5=2a+5 | | 3^5+2x=1/27 | | 74=5x+24 | | (4x+3)+(8x+10)=90 |

Equations solver categories